Think 24/7 Web Search

Search results

  1. Results from the Think 24/7 Content Network
  2. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements. The first few numbers defined this way ...

  3. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    More precisely, each natural number n is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set S has n elements" means that there exists a one to one correspondence between the two sets n and S. The sets used to define natural numbers satisfy Peano axioms.

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. [5] A set may have a finite number of elements or be an infinite set.

  6. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    Fundamentals. The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  7. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the ...

  8. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    Bijective function from N to the set E of even numbers. Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {nN: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.

  9. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    The inclusive or operation in a Boolean algebra. (In ring theory it is used for the exclusive or operation) ~. 1. The difference of two sets: x ~ y is the set of elements of x not in y. 2. An equivalence relation. \. The difference of two sets: x \ y is the set of elements of x not in y.